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1.

The nth even number is 2n.
The next even number after 2n is 2n + 2
(a) Explain why.
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(b) Write down an expression, in terms of 7, for the next even number after
2n+2
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(¢) Show algebraically that the sum of any 3 consecutive even numbers is
always a multiple of 6
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(5 marks)



2. Prove that 3n + 1)2 —(3n —1)2 1s a multiple of 4, for all positive integer
values of n.
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3. Prove, using algebra, that the sum of two consecutive whole numbers is always an
odd number.
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4. Prove that
(2n + 3)* — (2n — 3)’ is a multiple of 8
for all positive integer values of .
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*5.  Prove algebraically that the difference between the squares of any two
consecutive integers is equal to the sum of these two integers.
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6.

Prove that (57 + 1)2 —(5n —1)2 1s a multiple of 5, for all positive integer

values of n.
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7. If 2n 1s always even for all positive integer values of n, prove algebraically that
the sum of the squares of any two consecutive even numbers is always a multiple of 4.
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8. Prove that

n+1)y"—(m—1)+ 1is always odd for all positive integer values of .
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9. Prove algebraically that the sum of the squares of any two consecutive numbers

always leaves a remainder of 1 when divided by 4.
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