Mark Scheme F=ma Past Paper Questions

Jan 2002 to Jan 2009

8(a)(i) (use of
$$v^2 = u^2 + 2as$$
 gives) $0 = 25^2 - 2 \times 9.81 \times s$
 $19.6 \ s = 625 \ \text{and} \ s = 32 \ \text{m}$

(ii)
$$t = \frac{25}{9.81} = 2.5 \text{ s}$$

Q8 Jan 2002

(iii) (use of
$$v^2 = u^2 + 2as$$
 gives) $v^2 = 25^2 - 2 \times 9.81 \times 16$
 (allow C.E. from (a)(i)) and $v = 18 \text{ m s}^{-1}$

(b) time to stop the ball is greater ✓
∴ rate of change of momentum is less ✓
[or work done on ball is the same but greater distance ✓ ∴ less force ✓] (2)
(6)

5(a) (use of
$$F = ma$$
 gives) $F = 1.3 \times 10^3 \times 2.5 \checkmark$
= 3250 N \checkmark (3.25 × 10³) (2)

(b)(i) driving force = $3250 + 410 = 3660 \text{ N} \checkmark$ (allow C.E. from (a))

Q5 Jun 2002

(ii) (use of
$$P = Fv$$
 gives) $P = 3660 \times 2.2 \checkmark$
(allow C.E. from(i))
 $= 8100 \text{ W} \checkmark (8.1 \times 10^3)$ (3)

- (c) (component of) car's weight opposes motion

 [or overcomes gravity

 or more work is done as car gains potential energy] ✓

 (1)

 (6)
- 3(a) displacement is a vector ✓
 ball travels in opposite directions ✓

 max(I)
- (b) velocity is rate of change of displacement average speed is rate of change of distance velocity is a vector [or speed is a scalar] velocity changes direction any two ✓ ✓ (2)

(c)(i)
$$a = \frac{\left(-6.0 - 8.0\right)}{0.10}$$

= $(-)140 \text{ m s}^{-1}$
(allow C.E. for incorrect values of Δv)

(c)(ii)
$$F = 0.45 \times (-)140 = (-)63 \text{ N} \checkmark \text{ (allow C.E for value of } a)$$

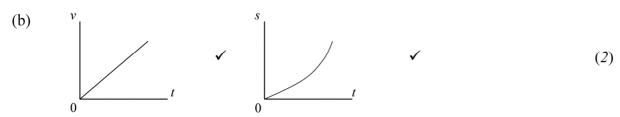
(c)(iii) away from wall ✓
at right angles to wall ✓
[or back to girl ✓ ✓]
[or opposite to direction of velocity at impact ✓ ✓]
(5)
(8)

(a)(i) (use of
$$F = ma$$
 gives) $1.8 \times 10^3 = 900 \ a \checkmark$

$$a = 2.0 \,\mathrm{m \, s^{-2}}$$
 \checkmark

Q2 Jan 2004

(ii) (use of
$$v = u + at$$
 gives) $v = 2.0 \times 8.0 = 16 \text{ m s}^{-1}$
(allow C.E. for *a* from (i))


(iii) (use of
$$p = mv$$
 gives) $p = 900 \times 16$
= $14 \times 10^3 \text{ kg m s}^{-1}$ (or N s) \checkmark (14.4 × 10³ kg m s⁻¹) (allow C.E. for v from(ii))

(iv) (use of
$$s = ut + \frac{1}{2}at^2$$
 gives) $s = \frac{1}{2} \times 2.0 \times 8^2$
= 64 m \checkmark (allow C.E. for a from (i))

(v) (use of
$$W = Fs$$
 gives) $W = 1.8 \times 10^3 \times 64 \checkmark$
= $1.2 \times 10^5 \text{ J} \checkmark$ (1.15 × 10⁵ J)
(allow C.E. for s from (iv))

[or
$$E_k = \frac{1}{2}mv^2 = \frac{1}{2} \times 900 \times 16^2$$
 \(= 1.2 \times 10^5 \text{ J } \times \)

(allow C.E. for v from (ii))] (9)

- (c)(i) decreases ✓ air resistance increases (with speed) ✓
 - (ii) eventually two forces are equal (in magnitude) ✓
 resultant force is zero ✓
 hence constant/terminal velocity (zero acceleration)
 in accordance with Newton's first law ✓
 correct statement and application of Newton's first or second law ✓

 max(5)
 (16)

Question 2

Q2 Jan 2005

(7)

- (a) vector quantities have direction (as well as magnitude)
 and scalar quantities do not ✓ (1)
- (b) vector: e.g. velocity, acceleration, momentum ✓ scalar: e.g. mass, temperature, energy ✓ (2)

(c)(i) addition of forces
$$(12 + 8)$$

(use of $F = ma$ gives) $a = \frac{(12 + 8)}{6.5} = 3.1 \text{ m s}^{-2}$ (3.08 m s⁻²)

(ii) subtraction of forces
$$(12 - 8)$$
 \checkmark

$$a = \frac{(12 - 8)}{6.5} = 0.62 \,\text{m s}^{-2} \,\checkmark \qquad (0.615 \,\text{m s}^{-2})$$
(4)

Question 6		
(a)	component (parallel to ramp) = $7.2 \times 10^3 \times \sin 30 \checkmark (= 3.6 \times 10^3 \text{ N})$	1
(b)	mass = $\frac{7.2 \times 10^3}{9.81}$ = 734 (kg) \checkmark Q6 Jun 2005 $a = \frac{3600}{734}$ = 4.9(1) m s ⁻² \checkmark	2
(c)	(use of $v^2 = u^2 + 2as$ gives) $0 = 18^2 - (2 \times 4.9 \times s) \checkmark$ $s = 33(.1) \text{ m} \checkmark$ (allow C.E. for value of a from (b))	2
(d)	frictional forces are acting \(\square\) increasing resultant force [or opposing motion] \(\square\) hence higher deceleration [or car stops quicker] \(\square\) energy is lost as thermal energy/heat \(\square\)	Max 2

Question 1		
(a)	scales ✓ Q1 Jan 2006 six points correctly plotted ✓ trendline ✓	3
(b)	average acceleration = $\frac{26}{25}$ = 1.0(4) m s ⁻² \checkmark (allow C.E. for incorrect values used in acceleration calculation)	2
(c)	area under graph ✓ = 510 ± 30 m ✓	2
(d)	(graph to show force starting from <i>y</i> -axis) decreasing (not a straight line) ✓ to zero (at end of graph) ✓	2
(e)	(since) gradient of a velocity-time graph gives acceleration ✓ first graph shows acceleration is decreasing ✓	2
	Total	11

Question 6		
(a) (i)	(use of $a = \frac{\Delta v}{\Delta t}$ gives) $a = \frac{4.5}{3600}$ \checkmark Q6 Jun 2006	
(ii)	$= 1.25 \times 10^{-3} \mathrm{m s^{-2}} \checkmark$ (use of $v^2 = u^2 + 2as$ gives) $0 = 4.5^2 - 2 \times 1.25 \times 10^{-3} \times s \checkmark$ $s \left(= \frac{20.25}{2.5 \times 10^{-3}} \right) = 8.1 \times 10^3 \mathrm{m} \checkmark$	4
(b)	distance increasing curve ✓ correct curve ✓	2
(c)	gradient (slope) of graph represents speed ✓ hence graph has decreasing gradient ✓	2
	Total	8

Que	stion 5		
(a)	(i)	(use of $F = ma$) Q5 Jan 2008	
		$a = 1.9 \times 10^{5}/5.6 \times 10^{4} = 3.4 \mathrm{m s^{-2}} \checkmark$	
	(ii)	(use of $v^2 = u^2 + 2as$)	3
		$82^2 = 2 \times 3.4 \times s \checkmark$	
		s = 989 m ✓ c.e. from (i)	
(b)		air resistance increases with speed ✓	2
		hence runway will be longer ✓	2
(c)	(i)	(use of $F_h = F\cos\theta$)	
		$F_h = 1.9 \times 105 \times \cos 22$	2
		$F_h = 1.8 \times 105 \mathrm{N} \checkmark$	2
	(ii)	$F_V = 1.9 \times 10^5 \times \sin 22 = 7.1 \times 10^4 \text{N} \checkmark$	
		Total	7

Question 2		
(a)	resultant force must be zero ✓ Q2 Jun 2008	
	because sledge is moving at constant velocity ✓ (or zero acceleration)	2
(b)	parallel component = 4.5 × 9.81 × sin 22 = 16.5 N ✓	
	perpendicular component = 4.5 × 9.81 × cos 22 = 41 N ✓	2
	(if components swapped -1) (if no g then 1 max but must have unit as kg)	
(c)	same as (b) (i) e.g. 16.5 N ✓	
	same as (b) (ii) e.g. 41 N ✓	2
	(ignore units)	
		6