Mark Scheme Projectiles Past Paper Questions

Jan 2002 to Jan 2009

8(a)(i) (use of
$$v^2 = u^2 + 2as$$
 gives) $0 = 25^2 - 2 \times 9.81 \times s$
 $19.6 \ s = 625 \ \text{and} \ s = 32 \ \text{m}$

(ii)
$$t = \frac{25}{9.81} = 2.5 \text{ s} \checkmark$$

Q8 Jan 2002

(iii) (use of
$$v^2 = u^2 + 2as$$
 gives) $v^2 = 25^2 - 2 \times 9.81 \times 16$
(allow C.E. from (a)(i))
and $v = 18 \text{ m s}^{-1}$
 \star max(4)

(b) time to stop the ball is greater ✓
∴ rate of change of momentum is less ✓
[or work done on ball is the same but greater distance ✓ ∴ less force ✓] (2)
(6)

Question 6 Q6 Jun 2002 (use of $a = \frac{\Delta v}{\Delta t}$ gives) $a = \frac{4.5}{3600}$ (a) (i) $= 1.25 \times 10^{-3} \,\mathrm{m \, s}^{-2}$ 4 (use of $v^2 = u^2 + 2as$ gives) $0 = 4.5^2 - 2 \times 1.25 \times 10^{-3} \times s$ (ii) $s\left(=\frac{20.25}{2.5\times10^{-3}}\right) = 8.1\times10^3 \,\mathrm{m} \checkmark$ (b) distance increasing curve ✓ 2 correct curve ✓ time gradient (slope) of graph represents speed ✓ (c) 2 hence graph has decreasing gradient ✓ **Total** 8

$$6(a)(i)$$
 70 m s⁻¹ \checkmark

(a)(ii)
$$v = 9.81 \times 2.0 \checkmark$$

= 20 m s⁻¹ \checkmark (19.6 m s⁻¹)

Q6 Jan 2003

(5)

(a)(iii)
$$v = \sqrt{(70^2 + 19.62^2)} = 73 \text{ m s}^{-1} \checkmark$$

direction: $\tan \theta = \frac{19.6}{70} = 0.28$
 $\theta = 15.6^\circ \checkmark (\pm 0.1^\circ) \text{ (to horizontal)} \checkmark$
(allow C.E. for values of v from (i) and (ii))
[or use of correct scale drawing]

- (b)(i) air resistance is greater than weight ✓
 (hence) resultant force is upwards ✓

 hence deceleration (Newton's second law) ✓
- (b)(ii) air resistance decreases as speed decreases ✓
 weight equals air resistance (hence constant speed)
 (hence) resultant force is zero (Newton's first law) ✓

 max(4)

(a)(i)

Q1 Jun 2004

(3)

(ii) no horizontal force acting ✓
 (hence) no (horizontal) acceleration ✓
 [or correct application of Newton's First law]

(b)(i) (use of $v^2 = u^2 + 2as$ gives) $32^2 = (0) + 2 \times 9.81 \times s \checkmark$ $s = \frac{1024}{19.62} \checkmark$ (= 52.2 m)

(ii) (use of $s = \frac{1}{2}at^2$ gives) $52 = \frac{1}{2}9.81 \times t^2 \checkmark$ $t = \sqrt{\frac{104}{9.81}} = 3.3 \text{ s} \checkmark$ (3.26 s) [or use of v = u + at gives $32 = (0) + 9.81 \times t \checkmark$

 $t = \frac{32}{9.81} = 3.3 \text{ s} \checkmark (3.26 \text{ s})$

- (iii) (use of x = vt gives) $x (= QR) = 95 \times 3.26 \checkmark$ = 310 m \checkmark (use of t = 3.3 gives x = 313.5 m) (allow C.E. for value of t from (ii)) (6)
- (c) maximum height is greater ✓
 because vertical acceleration is less ✓
 [or longer to accelerate] (2)
 (11)

Question 4		
(a)	dart moves at a constant speed horizontally ✓	
	as no horizontal force/air resistance ✓ Q4 Jan 2008	
	but accelerates vertically downwards ✓	
	this results in a parabolic path ✓	
	dartboard accelerates vertically downwards ✓	max 4
	at same rate as dart ✓	
	gravity acting on dart and/or dartboard at same rate as dart ✓	
	at a particular instant vertical (component of) velocity is the same for dart and dartboard at same rate as dart ✓	
(b) (i)	(use of speed = distance/time)	
	time = 2/8.0 = 0.25 s ✓	
(ii)	(use of $v = u + at$)	
	$v = 9.81 \times 0.25 = 2.45 \mathrm{m s^{-1}} \checkmark (\text{accept g} = 10 \mathrm{m/s^2})$	5
(iii)	(use of $v^2 = v_h^2 + v_v^2$)	5
	$v^2 = 2.45^2 + 8.0^2 \checkmark$	
	$v = 8.37 \mathrm{m s^{-1}} \checkmark$	
	angle below horizontal = tan ⁻¹ (2.45/8) = 17° ✓ (or 17.3°)	
	Total	6

Q4 Jan 2009

Question 4		
(a)	velocity vector tangential to path and drawn from the ball, arrow in correct direction ✓	2
	acceleration vector vertically downwards, arrow drawn and in line with ball ✓	
(b) (i)	$s = \frac{1}{2}gt^2$ gives $t = \sqrt{\frac{2y}{g}} = \sqrt{\frac{2 \times 24}{9.8(1)}} $ $\checkmark = 2.2(1)$ s \checkmark	,
(ii)	$v = s/t = 27/2.2(1) \checkmark = 12(.2 \text{ m s}^{-1}) \text{ or } 12(.3) \checkmark \text{ (ecf from (b) (i))}$	4
	(answer only gets both marks)	
	Total	6