Answers to examination-style questions

Answers

1 (a) antiproton; antiparticle; -1 (or-e)
neutrino; particle; $\mathbf{0}$
neutron; particle; $\mathbf{0}$
positron; antiparticle; +1(or +e)
(b) (i) they carry opposite charges (+ e and -e)
(ii) they lose kinetic energy gradually as they travel along their paths
(iii) Relevant points include:

- the speed is greater where the track is less curved
- the straighter track must therefore be before the particle met the plate
- the direction of the curve shows that the charge is positive
- the track must therefore be due to a positron

2 (a) 90 protons
139 neutrons and 90 electrons
(b) $\mathrm{X}=90$
$\mathrm{Y}=$ any value between 212 and 252
$Z=90$

3 (a) 18 protons
19 neutrons
(b) charge $=+2$ or $+2 e$ $Q=2 \times 1.6 \times 10^{-19}=3.2 \times 10^{-19} \mathrm{C}$
(c) (i) neutron
(ii) electron
(d) $(\%)=\frac{16 \times 9.11 \times 10^{-31}}{37 \times 1.67 \times 10^{-27}} \times 100$

$$
=2.4 \times 10^{-2} \%
$$

Marks Examiner's tips

3 There are six spaces to fill; the answers are shown here in bold type.
All 6 correct: 3 marks
4 or 5 correct: 2 marks
2 or 3 correct: 1 mark

1 The magnetic field therefore forces them in opposite directions.

1 'The slower it went, the more it would bend' (passage). Slower charged particles are deflected more easily by a magnetic field.

3 '... he discovered a beta particle that slowed down but bent in the opposite direction to all the other beta trails ..., (passage).

1 Proton number $Z=90$
1 Number of neutrons $=229-90$
Number of electrons $=Z$

1 This is still thorium, and here X is used to represent the proton number.
1 In a different isotope, the nucleon number cannot be 229 .
1 The number of electrons is unchanged.

1 Proton number $Z=18$
1 Number of neutrons $=37-18$

12 electrons have been removed, so the ion's charge is positive.
$1 \quad Q=0$ for a neutron, so (Q / m) is also zero.

1 The electron's small mass gives it the largest (Q / m).

2 Marks are for correct nuclear mass, and for correct substitution of values in rest of the equation.
1 Remember to multiply by 100 to get a percentage.

Answers to examination-style questions

Answers

4 (a) number of protons $=$ number of electrons (e.g. 13)
number of neutrons $=(28-$ number of protons) (e.g. 15)
(b) (i) nuclei have same number of protons
(ii) but a different number of neutrons, or nucleons
(iii) $\frac{Q}{m}=\frac{92 \times 1.60 \times 10^{-19}}{236 \times 1.67 \times 10^{-27}}$

$$
=3.7 \times 10^{7} \mathrm{C} \mathrm{~kg}^{-1}
$$

(iv) 95

5 (a) $\mathrm{X}=225$
$\mathrm{Y}=88$
(b) ratio $\left(=\frac{225}{4}\right)=56$

6 (a) (i) a helium nucleus (or a doubly-ionised helium atom)
Properties:

- charge +2 e
- mass ≈ 4 units
(ii) ${ }_{85}^{215} \mathrm{At} \rightarrow{ }_{83}^{211} \mathrm{Bi}+\alpha$
(b) (i) Relevant points include:
- a neutron changes into a proton
- the proton remains in the nucleus
- a high energy electron (β^{-}particle) is emitted from the nucleus
- an antineutrino is also emitted
- the nucleus becomes more stable
(ii) ${ }_{42}^{99} \mathrm{Mo} \rightarrow{ }_{43}^{99} \mathrm{Tc}+\beta^{-}+\bar{v}$

Marks Examiner's tips

1 There could have been 14 protons and 14 neutrons!

1 This answer follows directly from the

1 The mark is for correct substitution of charge and mass values and a correct calculation.

1 The number of protons and neutrons (given by the mass numbers for the nuclei) on each side is the same.

1 Nucleon numbers must balance in the decay, and α is a helium nucleus with $A=4$.
1 Proton numbers must also balance, and $Z=2$ for the α particle.

1 The answer is a ratio of two masses and has no unit.

1 (i) tests your factual knowledge. An α particle consists of 2 protons and 2
2 neutrons, giving these charge and mass values.

21 mark for writing ${ }_{83}^{211} \mathrm{Bi}$ as the product nucleus and the second mark for the completed reaction equation.

3 Electrons do not reside in the nucleus; the β^{-}particle is formed at the instant of decay. The antineutrino is necessary to explain the range of energies of the β^{-}particles that are emitted.

21 mark for inserting the missing values of 99 and 43 , and 1 mark for including the antineutrino.
In β^{-}decay A stays the same but Z increases by 1 (since a neutron changes into a proton).

Answers to examination-style questions

Answers

7 (a) (i) $9.11 \times 10^{-31} \mathrm{~kg}$
(ii) $f\left(=\frac{c}{\lambda}\right)=\frac{3.00 \times 10^{8}}{8.30 \times 10^{-13}}$

$$
\left(=3.61 \times 10^{20} \mathrm{~Hz}\right)
$$

$$
E(=h f)=6.63 \times 10^{-34} \times 3.61 \times 10^{20}
$$

$$
=2.4 \times 10^{-13} \mathrm{~J}
$$

(iii) $E=\frac{2.39 \times 10^{-13}}{1.60 \times 10^{-13}}$

$$
=1.5 \mathrm{MeV}
$$

(b) weak interaction
(c) $\mathrm{A}=$ neutron
$\mathrm{B}=\mathrm{W}^{+}$
$C=$ (electron) neutrino or $v_{(e)}$

8 (a) (i) electron
(ii) they annihilate, or destroy each other forming two gamma rays (or photons)
(b) energy released $=2 \times 0.51=1.02 \mathrm{MeV}$

$$
=1.02 \times 1.60 \times 10^{-13}=1.6 \times 10^{-13} \mathrm{~J}
$$

9 (a) (i) they annihilate, or destroy each other, or form two photons
(ii) the energy associated with the rest masses must be added
(b) There are 3 possibilities: the particles produced could

- be more numerous
- be more massive
- have greater kinetic energy

Marks Examiner's tips

1 Proton must lose + charge
1 Not antineutrino

1 A positron is a 'positive electron', having the same mass and equal but opposite charge.

1 The antiparticle must have the same rest mass as the particle.
1 The energy released is the total of the rest energies. The energy released could be greater than this if the particles were to meet with a significant amount of kinetic energy, so the value calculated is the minimum energy released.

1 This is straightforward annihilation of a particle and its antiparticle.
1 Total energy includes both the kinetic energy and the rest mass energy of the two colliding particles. Photons have no rest mass.
any 2 Annihilation can produce particles other than photons (e.g. muons) when the colliding particles have a total energy greater than the rest masses of the particles that are produced.

Chapter 1

Answers to examination-style questions

Answers

10 (a) weak interaction
(b) arrow from e^{-}arrow, pointing top left and labelled v_{e} arrow from p arrow, pointing top right and labelled n

Marks Examiner's tips

1 The diagram in (b) showing W^{-}is a big hint!

1 You must show p becoming n , and e^{-} becoming v_{e}.
1

21 mark for naming the exchange particle and the second mark for the corresponding interaction.
(b) Possible roles are:

- transfers energy
- transfers momentum
- transfers force
- (sometimes) transfers charge

1 Energy must be sufficient to create at least the total rest masses of the particles produced.
It is converted into a particle and its antiparticle
Suitable example named, such as:
1 This occurs in the vicinity of another particle, such as a nucleus or an electron.

- proton + antiproton
- electron + positron

Only one example is needed.

