1.	(a)	(i)	beam splitter [or semi-silvered mirror] (1)		
		(ii)	a compensator [or a glass block] (1) allows for the thickness of the (semi-silvered) mirror to obtain equal optical path lengths in the two branches of the apparatus) (1)	3	
	(b)	(i)	<pre>concentric rings (1) an interference pattern (1) [alt: whole view shows one shade (1) because there is a constant phase difference(1)]</pre>		
		(ii)	fringes [or rings] shift (1) 05 λ extra for l_1 gives one complete fringe shift [or fraction of wavelength extra causes noticeable fringe shift or noticeable change of intensity (if uniform)] (1)	4	
	(c)	(i)	rotate apparatus through 90° (1) observe the fringes at the same time (1) observed fringes did not change [or shift] (1)		
		(ii)	speed of light in free space is invariant [or does not depend on motion of source or observer or no evidence for absolute motion] (1)	max 3	[10]

2. (a) (i)
$$l = (\upsilon t = 1.00 \times 10^8 \times 15 \times 10^{-9}) = 1.50 \text{ m}$$
 (1)

(ii)
$$\left(l = l_0 \sqrt{1 - \frac{v^2}{c^2}}\right)$$

 $1.50 = l_0 \sqrt{1 - \frac{(1.00 \times 10^8)^2}{(3.00 \times 10^8)^2}}$ (1)
 $l_0 \left(= \frac{1.50}{0.943} \right) = 1.59 \text{ m (1)}$

the speed of light is the same in the two directions (1)
the speed of light from a light source on Earth is
unaffected by the motion of the Earth (1)
[or the speed of light is invariant
or independent of the motion of the source or observer] (1)
the laws of dynamics cannot be applied to light (1)
no ether (1)
(b) (i) time
$$\left(=\frac{\text{distance}}{1000}=\frac{16cT_{\text{oneyear}}}{1000}\right)=20 \text{ yr}$$
 (1)

3.

(a) no change in the fringe pattern on rotation (1)

(i) time (speed 0.8c) = 20 yr (1)
(ii)
$$L_0 = 16c \text{ [or 16 light years] (1)}$$

 $L \left(= L_0 \left(1 - \frac{v^2}{c^2} \right)^{\frac{1}{2}} \right) = 16(1 - 0.8^2)^{\frac{1}{2}} (=0.6 \times 16c) = 9.6c (1)$

max 3

(ii) total k.e. =
$$(10^7 \times 9.1 \times 10^{-12}) = 9.1 \times 10^{-5}$$
(J) (1)
k.e. per second $\left(=\frac{9.1 \times 10^{-5}}{15 \times 10^{-9}}\right) = 6080$ W max 5

(ii) total k.e. =
$$(10^7 \times 9.1 \times 10^{-12}) = 9.1 \times 10^{-5}$$
(J) (1)
 (-9.1×10^{-5})

(b) (i)
$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$
 (1) $\left[\operatorname{or} \frac{m_0}{\sqrt{1 - \frac{(1.00 \times 10^8)^2}{(3.00 \times 10^8)^2}}} \right]$
 $m \left[= \frac{m_0}{\sqrt{1 - \frac{(1.00 \times 10^8)^2}{(3.00 \times 10^8)^2}}} \right] = 1.06m_0$
[or = 1.06 × 1.67 × 10⁻²⁷ or 1.77 × 10⁻²⁷ kg] (1)
kinetic energy = $(m - m_0)c^2$ (1)
[or = 0.06m_0c^2 or 0.06 × 1.67 × 10^{-27} × (3 × 10^8)^2]

[8]

(iii)
$$\Delta t = 20$$
 years (1)
 $\Delta t_0 = \Delta t \left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}} = 20(1 - 0.8^2)^{\frac{1}{2}}$ (1)
 $= 0.6 \times 20 = 12$ yr \therefore age $= 21 + 12 = 33$ yr (1) 6

[9]

(a) (i) speed of light (in free space) independent of motion of source (1) and of motion of observer (1)
 [alternative (i) speed of light is same in all frames of reference (1)]

(ii) laws of physics have same form in all inertial frames (1) inertial frame is one in which Newton's 1st law of motion obeyed (1) laws of physics unchanged in coordinate transformation from one inertial frame of reference to any other inertial frame (1) max 4

(b) (i)
$$m\left(=m_0\left(1-\frac{\nu^2}{c^2}\right)^{-\frac{1}{2}}\right) = 1.88 \times 10^{-28} \left(1-(0.996)^2\right)^{-\frac{1}{2}}$$
 (1)
= 2.10 × 10-²⁷ kg (1)

(ii)
$$t_0 = 2.2 \times 10^{-6} \text{ s} (1)$$

 $t \left(= t_0 \left(1 - \frac{v^2}{c^2} \right)^{-\frac{1}{2}} \right) = 2.2 \times 10^{-6} \left(1 - (0.996)^2 \right)^{-\frac{1}{2}} \text{ (s) (1)}$
 $= 2.46 \times 10^{-5} \text{ (s) (1)}$
 $s(= vt = 3.00 \times 10^8 \times 0.996 \times 2.46 \times 10^{-5}) = 7360 \text{ m (1)}$

4.

[alternative (ii)

$$l = \upsilon t = 0.996 \times 3.0 \times 10^8 \times 2.2 \times 10^6 = 657 \text{ (m) (1)}$$

correct substitution of l in $l = l_0 \sqrt{1 - \frac{\upsilon^2}{c^2}}$ (1)
 $l_0 = \frac{l}{\sqrt{1 - \frac{\upsilon^2}{c^2}}} = \frac{657}{\sqrt{1 - 0.996^2}}$ (1)
 $l_0 = 7360 \text{ m (1)}$

(a) as speed $\rightarrow c$, mass \rightarrow infinite (1) gain of E_k causes large gain of mass when speed is close to c (1) gain of E_k causes small gain of speed when speed is close to c (1) $E_k = \frac{1}{2}mv^2$ valid at speeds <<c (1) max 3 QWC

(b) (i)
$$E_{\rm k} = eV = 1.6 \times 10^{-19} \times 2.1 \times 10^{10}$$
 (1) (= 3.3(6) × 10^{-9} J)

(ii) (use of
$$m = \frac{E_k}{c^2}$$
 gives) gain of mass $= \frac{3.36 \times 10^{-9}}{(3 \times 10^8)^2} = 3.7 \times 10^{-26}$ (kg) (1)
 $= \frac{3.7 \times 10^{-26}}{1.67 \times 10^{-27}} m_0 = 22 m_0$ (1)
mass of proton $= 22 m_0 + m_0$ (1) (=23 m_0)
(using $E_k = 3.4 \times 10^{-9}$ gives gain of mass $= 3.8 \times 10^{-26}$ (kg) $\equiv 23 m_0$
mass of proton $= 24 m_0$

(c)
$$23 = \left(1 - \frac{v^2}{c^2}\right)^{-1/2}$$
 (1)
 $\frac{v^2}{c_2} = \left(1 - \frac{1}{23^2}\right) = 0.998$ (1)
 $v = 0.999 \ c = 2.99(7) \times 10^8 \ m \ s^{-1}$ 3

6. (a) (i) (use of
$$v = \frac{d}{t}$$
 gives) $v = \frac{240}{0.84 \times 10^{-6}} = 2.8(6) \times 10^8 \text{ m s}^{-1}$ (1)

(ii) actual length = 240 m (1)

[10]

6

4

[10]

5.

(use of
$$l = l_0 \left(1 - \frac{v^2}{c^2}\right)^{1/2}$$
 gives)

length in particle frame, $l = 240 \left(1 - \frac{2.86^2}{3^2}\right)^{1/2}$ (1)

(allow C.E. for value of v)
$$l = (240 \times 0.30) = 72(.5) \text{ m}$$
 (1)

(b) time between two events depends on speed of observer

[or $t = t_0 \left(1 - \frac{v^2}{c^2}\right)^{-1/2}$ or rocket time depends on speed of traveller] (1)

traveller's journey time is the proper time between start and stop [or t_0 is the proper time or t is the time on Earth] (1) journey time measured on Earth > journey time measured by traveller [or $t > t_0$ or rocket time slower/less than Earth time] (1) traveller younger than twin on return to Earth (1)

7. (i)
$$v \left(= \frac{45}{152 \times 10^{-9}} \right) = 2.96 \times 10^8 \,\mathrm{m \, s^{-1}}$$
 (1) 2

(ii)
$$t = 152 \text{ ns} (1)$$

 $t_0 \left[= 152 \left(1 - \frac{v^2}{c^2}\right)^{1/2} \right] = 152 \left(1 - \left(\frac{2.96}{3.00}\right)^2\right)^{1/2}$ (1)
 $= 25 \text{ ns} (1)$
QWC 2

[4	1	
L -	а.	

[8]

4

8.	(a)	(i)	two beams (or rays) reach the observer (1)			
			interference takes place between the two beams (1)			
			bright fringe formed if/where (optical) path difference =			
			whole number of wavelengths			
			(or two beams in phase)			
			[or dark fringe formed if/where (optical) path difference = whole number + 0.5 wavelengths]			
			(or two beams out of phase by 180 °C/ $\pi/2$ /½ cycle) (1)			
		(ii)	rotation by 90° realigns beams relative to direction of Earth's motion (1)			
			no shift means no change in optical path difference between the two beams			
			(:.) time taken by light to travel to each mirror unchanged by rotation (1)			
			distance to mirrors is unchanged by rotation (1)			
			(:.) no shift means that the speed of light is unaffected			
			[or disproves other theory] (1)		max 5	
	(b)	the s	peed of light does not depend on the motion of the light source	(1)		
	(0)	or th	at of the observer	(-)	2	
						[7]

9. (a) Newton's laws obeyed in an inertial frame [or inertial frames move at constant velocity relative to each other] (1) suitable example (e.g. object moving at constant velocity) (1)

(b) (i) (use of
$$t = t_0 \left(1 - \frac{\nu^2}{c^2}\right)^{-1/2}$$
 gives) $t_0 = 18$ (ns) (1)
 $t = 18 \times 10^{-9} \left(1 - \frac{(0.995c)^2}{c^2}\right)^{-1/2}$ (1)
 $= 1.8 \times 10^{-7}$ s (1)

Sciencemathsmaster.weebly.com

6

(ii) time taken
$$\left(=\frac{\text{distance}}{\text{speed}}\right) = \left(\frac{108}{0.995 \times 3.0 \times 10^8}\right) = 3.6 \times 10^{-7} \text{ s}$$
 (1)
time taken = 2 half-lives, which is time to decrease to 25% intensity (1)
[alternative scheme: (use of $l = l_0 \left(1 - \frac{v^2}{c^2}\right)^{1/2}$ gives) $l_0 = 108$ (m)
 $l = 108 \left(1 - \frac{(0.995c)^2}{c_2}\right)^{1/2} = 10.8 \text{ m}$ (1)
time taken $\left(\frac{10.8}{0.995c}\right) = 3.6 \times 10^{-8} \text{ s}$
= 2 half-lives, which is time to decrease to 25% intensity (1)]

[7]

5

10. (i)
$$E_{\rm k} (= eV) (= 1.6 \times 10^{-19} \times 1.1 \times 10^9)$$

= 1.8×10^{-10} (J) (1) $(1.76 \times 10^{-10}$ (J))

(ii) (use of
$$E = mc^2$$
 gives) $\Delta m = \left(\frac{1.8 \times 10^{-10}}{(3 \times 10^8)^2}\right) = 2.0 \times 10^{-27}$ (kg) (1)
 $= \frac{2.0 \times 10^{-27}}{1.67 \times 10^{-27}} m_0 = 1.2 m_0$ (1)
(allow C.E. for value of E_k from (i), but not 3rd mark)
 $\therefore m = m_0 + \Delta m$ (1) (= 2.2 m_0)

(iii) (use of
$$m = m_0 \left(1 - \frac{v^2}{c^2}\right)^{-1/2}$$
 gives) $2.2m_0 = \left(1 - \frac{v^2}{c^2}\right)^{-1/2}$ (1)
 $v = \left(1 - \frac{1}{2.2^2}\right)^{1/2} c$ (1)
 $= 2.7 \times 10^8 \text{ m s}^{-1}$ (1)

[7]

11. (a) (use of $t = t_0 \left(1 - \frac{v^2}{c^2}\right)^{-\frac{1}{2}}$ gives) $t = 800(1 - 0.994^2)^{-1/2}$ (1) =7300 s(1)(ii) distance (= $0.994ct = 0.994 \times 3 \times 10^8 \times 7300$) $= 2.2 \times 10^{12} \text{m}$ (1) $(2.18 \times 10^{12} \text{m})$ (allow C.E. for value of *t* from (i)) 4 space twin's travel time = proper time (or t_0) (1) (b) time on Earth, $t = t_0 \left(1 - \frac{v^2}{c^2}\right)^{-\frac{1}{2}}$ (1) $t > t_0$ [or time for traveller slows down compared with Earth twin] (1) space twin ages less than Earth twin (1) travelling in non-inertial frame of reference (1) max 3

12. (a) $10m_0 = m_0 \left(1 - \frac{v_2}{c^2}\right)^{-\frac{1}{2}}$ (1) gives $\frac{v^2}{c^2} = 1 - 0.01 = 0.99$ (1) $v (= 0.995c) = 2.98(5) \times 10^8 \text{ m s}^{-1}$ (1)

> (b) $m = m_0 \left(1 - \frac{v_2}{c^2}\right)^{-\frac{1}{2}}$ (1) $m \rightarrow \text{infinity as } v \rightarrow c$ (1) [or *m* increases as *v* increases] $E_{\rm k}(=mc^2 - m_0c^2) \rightarrow \text{infinity as } v \rightarrow c$ (1) v = c would require infinite E_k (or mass) which is (physically) impossible (1)

(i) time taken $\left(\frac{distance}{speed} = \frac{34}{0.95 \times 3.0 \times 10^8}\right) = 1.1(9) \times 10^7 \text{ s}$ (1) 13.

Max 3

[7]

3

[6]

8

 $t_0 = 800$ (s) (1) (i)

(ii) use of
$$t = \frac{t_0}{(1 - v^2 / c^2)^{1/2}}$$
 where $t_0 = 18$ ns

and t is the half-life in the detectors' frame of reference (1)

$$\therefore t = \frac{18 \times 10^{-9}}{(1 - 0.95^2)^{1/2}} = 57(.6) \times 10^{-9} \,\mathrm{s} \,(1)$$

time taken for π meson to pass from one detector to the other = 2 half-lives (approx) (in the detectors' frame of reference) (1) 2 half-lives correspond to a reduction to 25%, so 75% of the π mesons passing the first detector do not reach the second detector (1)

alternatives for first 3 marks in (ii)

1. use of
$$t = \frac{t_0}{\sqrt{(1 - v^2 / c^2)}}$$
, where $t_0 = 18$ ns
= $\frac{18}{(1 - 0.95^2)^{1/2}} = 57.6$ (ns)

journey time in detector frame (= 2t) = 2 × 57.6ns (\approx 2 half-lives)

2. use of t =
$$\frac{t_0}{\sqrt{(1 - v^2 / c^2)}}$$
 where t = 119 ns

= journey time in detector frame

 $t_0 = 119\sqrt{1 - 0.95^2} = 37$ ns journey time in rest frame = 2 × 18 ns (2 half-lives)

[5]

14. (a)

- (i) speed of light in free space independent of motion of source (1) and of motion of observer (1)
- (ii) laws of physics have the same form in all inertial frames (1)
 - inertial frame is one in which Newton's 1st law of motion is obeyed (1)

laws of physics unchanged in coordinate transformation (1) from one inertial frame to another (1) max 4

(b) (i)
$$m (= m_0 (1 - v^2/c^2)^{-v/2}) = 1.9 \times 10^{-28} \times (1 - 0.995^2)^{-1/2} (kg) (1)$$

 $= 1.9 \times 10^{-27} kg (1)$
(ii) $E (= mc^2) = 1.9 \times 10^{-27} \times (3.0 \times 10^8)^2 (1)$
 $= 1.7 \times 10^{-10} J (1)$
(iii) $E_K (= E - m_0 c^2) = 1.7 \times 10^{-10} (1.9 \times 10^{-28} \times (3.0 \times 10^8)^2) (1)$
 $= 1.5 \times 10^{-10} J (1)$ 6
[10]